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COMPLEX COEFFICIENT OF COMPLEXITY FOR GAME-TREE 
STRUCTURES IN DISCRETE OPTIMIZATION OF A GEAR PUMP 

HAVING TEETH UNDERCUTTING 
 
 

 Adam DEPTUŁA, Marian A. PARTYKA  
 
 
Abstract: A gear pump optimization requires calculating volumetric, hydraulic and 
mechanical, as well as total efficiency. The pump efficiency optimization can be multi-
criteria or mono-criterion. Assuming that the total pump efficiency is the  goal function and 
the parameters- we are looking for- are values of construction and/or exploitation 
parameters, then optimization can be made separately for construction and exploitation 
parameters looking for the maximum efficiency value. There are already studies which 
analyze the rank of validity parameters  Q, n, p, M  using multi-valued and then complex 
logic decision. Original solution in this work is the application of a complex coefficient of 
complexity a game graphs. 
 
Key words: gear pump after tooth undercutting, optimization, complex coefficient of 
complexity, dependence graphs, game- tree structures. 
 
 
1.Introduction 
 

Fluid-flow machines form a wide group of systems. The work of fluid-flow machines is 
most frequently based on two states:  transient state (in which values of the system 
functions change in time) and steady state (the functions values do not change in time or 
change periodically). From among the displacement pumps, gear pumps are most 
commonly used (their share is estimated at about 60%) as energy generators in hydraulic 
drive systems. This is owing to their simple and compact design, operational reliability, 
high resistance to working medium pollution, high efficiency and small overall dimensions 
in comparison with other pumping units. Fluid flow energy generators are one of the 
principal components of any hydraulic system. In industry, external meshing gear pumps 
are most commonly used. Their share is estimated at about 50% [1, 2]. This is owing to 
their simple and compact design, operational reliability, high resistance to working medium 
pollution, high efficiency, small overall dimensions in comparison with other pumping 
units and low manufacturing cost. Moreover, gear pumps can work at considerable 
rotational speeds and in this respect they are better than the other types of displacement 
pumps. Owing to the above advantages, gear pumps have found widespread use in the 
drive, control and lubrication systems of machines and equipment. Various optimization 
algorithms, e.g. the systematic search method, the Monte Carlo method and the gradient 
method, are employed [2]. There are already studies which analyze the rank of validity 
parameters  Q, n, p, M  using multi-valued and then complex logic decision [3, 4]. 

Original solution in this work is the application of a complex coefficient of complexity 
for  game graphs. Different graph solutions mean connections between input and output 
data as well as decision variables of the analyzed system (e.g. in the machine system). 
Game tree-structures from each graph vertex describe the decision making process and the 
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space of the possible states of the analysed system [5, 6]. The obtained game structures 
differ in shape and properties. In order to choose a game structure with the lowest 
complexity, it is necessary to calculate a complex coefficient of complexity for all 
structures that are obtained. 

Tree structure, with the lowest values of complexity level is the simplest structure. It 
should be noted that the complex coefficient of complexity of the structure is used in the 
description of multi-valued logical decision trees. 

 
2. Gear pump after tooth root undercutting 
 

The designed and built prototype pump has a three-plate structure shown schematically 
in Fig. 1. The front plate (1) is used for mounting the pump on the drive unit. The middle 
plate (2) contains gear wheels, slide bearing housings and suction and forcing holes for 
connecting to a hydraulic system. The whole construction is closed with a rear plate (3) [7, 
8]. 
 

 

 

 

 

 

Fig. 1. Three-plate design of gear micropump with external meshing. 
1 – front (mounting) plate, 2 – middle (rest) plate, 3– rear plate 

4– driving shaft 
 

 
 

Fig. 2. The gear pump in the reverberation chamber 
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The tested prototype unit was designed in-house and manufactured by the Hydraulic 
Pumps Manufacturing Company Ltd. in Wrocław. The pump was designed having in mind 
the technological capacities of this company. Modification can be made by means of a 
cutting tool with the so-called prominence or by means of an appropriate choice of 
engagement correction. As far as the model of an involute tooth profile (Fig. 3) is 
concerned, it has been agreed that the representative top line will be moved towards the 
radius of the tool’s foot with the tip clearance value equal to lw as a result of rounding or 
bevelling of the cutting edge. The tooth profile displacement of the correction value equal 
to +x∙m0 has also been taken into consideration [7, 8]. 

 

  
 

Fig. 3. The tooth undercutting by means of a trapezoidal profile rack [7, 8] 

 A gear pump optimization requires calculating volumetric, hydraulic and mechanical, as 
well as total efficiency. The pump efficiency optimization can be multi-criteria or mono-
criterion. While looking for an optimal function value v , hm , c , the following arithmetic 

scopes of changes have been adopted: 0,96v  ; 0,89hm  ; 0,86c  . In [3],  an analysis 
of a degree of importance of a gear pump construction parameters using multiple-valued 
logic decision trees was made for joined parameters  Q n , p and M.  
 These values had been coded by means of logic decision variables for the needs of logic 
decision trees. 

500n  [rpm] ~ 0; 800n  [rpm] ~ 1; 1000n  [rpm] ~ 2; 1500n  [rpm] ~ 3; 
2000n  [rpm] ~ 4; 0tp  [MPa] ~ 0; 5tp  [MPa] ~ 1 ; 10tp  [MPa] ~ 2; 
15tp  [MPa] ~ 3;      20tp  [MPa] ~ 4; 25tp  [MPa] ~ 5; 28tp  [MPa] ~ 6; 

30tp  [MPa] ~ 7; 20,2;21,1rzQ  [l/min] ~ 0; 34,2;34,9rzQ   [l/min] ~ 

1; 43,3;44,5rzQ  [l/min] ~ 2; 65,5;67,3rzQ   [l/min] ~ 3; 87,6;89,3rzQ  [l/min] 

~ 4; 2,0;47,0M  [Nm] ~ 0; 77,0;125,0M  [Nm] ~ 1; 138,0;182,0M  [Nm] 

~ 2;  200,0;259,0M  [Nm] ~ 3; where 2,0; 259,0M  [Nm] and Mi  0, 1, 2, 3. 
 The complex coefficient of complexity was calculated current for all multi-valued 
decision trees.  
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    Table 1. Hydraulic measurement results. Arithmetic and logic values and the function of 
 purpose [3, 8] 

n [rpm] pt 
[Mpa] 

Qrz 
[l/min] 

M 
[Nm] 

Logic values                  
n,      pt ,     Qrz,    M 

v 
[%] 

hm 
[%] 

c 
[%] 

500 0 21,1 2,0 

0 

 0 

0 

0 94,6 0,0 0,0 
5 20,5 36,0  1 0 92,1 98,0 90,3 
10 20,3 77,0  2 1 91,3 91,8 83,8 
15 20,2 116,0  3 1 90,9 91,5 83,1 
20 20,2 156,0  4 2 90,9 90,7 82,4 
25 20,5 200,0  5 3 92,1 88,5 81,5 
28 20,6 218,0  6 3 92,5 90,9 84,1 
30 20,7 236,0  7 3 93,0 90,0 83,6 

800 0 34,9 2,0 

1 

 0 

1 

0 98,0 0,0 0,0 
5 34,7 38,0  1 0 97,5 92,8 90,5 
10 34,3 78,0  2 1 96,2 90,6 87,2 
15 34,2 118,0  3 1 96,0 89,9 86,3 
20 34,1 160,0  4 2 95,7 88,4 84,6 
25 34,5 202,0  5 3 97,0 87,6 85,0 
28 34,7 224,0  6 3 97,5 88,5 86,3 
30 34,8 240,0  7 3 97,8 88,5 86,5 

1000 0 44,5 2,2 

2 

 0 

2 

0 99,9 0,0 0,0 
5 44,1 38,0  1 0 99,1 92,8 92,0 
10 43,9 82,0  2 1 98,7 86,2 85,1 
15 43,4 124,0  3 1 97,4 85,6 83,4 
20 43,4 168,0  4 2 97,4 84,2 82,1 
25 43,4 208,0  5 3 97,4 85,1 82,9 
28 43,4 234,0  6 3 97,4 84,7 82,5 
30 43,3 249,0  7 3 97,2 85,3 82,9 

1500 0 67,3 6,0 

3 

 0 

3 

0 100,9 0,0 0,0 
5 66,8 42,0  1 0 100,0 84,0 84,0 
10 66,5 84,0  2 1 99,6 84,1 83,8 
15 66,1 125,0  3 1 99,1 84,9 84,1 
20 65,5 172,0  4 2 98,1 82,3 80,7 
25 65,7 210,0  5 3 98,4 84,2 82,9 
28 65,6 235,0  6 3 98,2 84,3 82,8 
30 65,5 255,0  7 3 98,1 83,3 81,7 

2000 0 89,3 8,0 

4 

 0 

4 

0 100,3 0,0 0,0 
5 89,0 47,0  1 0 100,0 75,0 75,0 
10 88,3 94,0  2 1 99,3 75,2 74,6 
15 88,0 138,0  3 2 98,8 76,9 76,0 
20 87,6 182,0  4 2 98,4 77,8 76,5 
25 88,0 214,0  5 3 98,8 82,7 81,7 
28 87,9 241,0  6 3 98,7 82,2 81,2 
30 87,8 259,0  7 3 98,6 82,0 80,9 
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Functions: v , hm , c  are the criterion functions of purpose whereas parameters n, tp , 

rzQ  are decision variables.  

3. Complex coefficient of complexity for game-tree structures 
 
 Complex coefficient of complexity LK( iG ) is applied to the description of the shape 
and properties of the game-tree structures previously obtained by the decomposition of the 
dependence graph on the i-th vertex. The level of structure's complexity of is determined by 
the complex coefficient of complexity LK( iG )[9, 10, 11].                                       
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where: 
 

LK( iG )-complex coefficient of complexity of structure iG , 
L- number of leaves for the i-th node branching ( deg( ) 2iw  ), 

il
h - amount (complexity) of the i-th leaf. 

iw
 
-i-th node,  

( ) deg( )i id w w - degree of i-th node branching (amount of node branchings),  
( )ih w - distance from the i-th node root, 
( )W L - set of all nodes. 

 
The Figure 4 shows an example game-tree structure with different coefficients L and LK. 
 

 
 

Fig. 4. Tree-game structures with different complexity coefficients L and LK 

 
It should be noted that the complex coefficient of complexity of the structure is used in 

the description of multi-valued logical decision trees [9]. 
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Example 1 

For a multiple-valued logic function f(x1, x2 , x3) written by means of numbers KAPN: 
000, 001, 002, 110, 003, 102, 004, 013, 014, 023, 124, 103 there is one MZAPN after the 
application of the Quine–McCluskey algorithm based on the minimization of individual 
partial multi-valued logic functions having 16 literals [12]: 

 

     
  

1 2 3 0 1 0 2 1 2 3 3 4 3 2 2 3 3 4 3

1 1 0 2 2 3 3 3 1 2 0 3 2 3 4 3

( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

f x x x j x j x j x j x j x j x j x j x
j x j x j x j x j x j x j x j x

     
  

 

The remaining ZAPN: 1 3 2( , , )f x x x , 3 2 1( , , )f x x x , 3 1 2( , , )f x x x , 2 3 1( , , )f x x x , 2 1 3( , , )f x x x  
having 18, 22, 21, 20 and 17 literals. Figure 5 shows optimal multiple-valued logic trees. 

 

Fig. 5. Optimal multiple-valued logic tree for the logical function of Example 1 

For each of the multi-valued logic trees after all possible cut-offs can be calculated complex 
coefficients of acomplexity of LK. For optimal logic tree: 
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For other multi-valued logic trees are:  1 3 2( , , ) 11,8 2KL f x x x   3 2 1( , , ) 1 5, 3KL f x x x   
 3 1 2( , , ) 17 , 2KL f x x x   2 3 1( , , ) 16 , 2 6KL f x x x   2 1 3( , , ) 11, 64KL f x x x   

 
3. 1. Complex coefficient of complexity in discrete optimization of a gear pump after 
tooth undercutting 
 Tree structures described complex coefficient of complexity for each performance v, 
hm, c are shown in Figures 6-8. The optimal tree structures described complex 
coefficient of complexity for each performance are shown in Figures 9-11. 
 

1  

7

64
 

5
 

3
 

2
 



91 
 

M
Q n

p


10KL 
 

M
Q n

p


16,3KL 
 

Q n
M
p



10,22KL   

 

 

Fig. 6. Complex coefficients of complexity for efficiency c  
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Fig. 7. Complex coefficients of complexity for efficiency hm  
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Fig. 8. Complex coefficients of complexity for efficiency v  
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Fig. 9. Optimal complex coefficient of complexity for efficiency c  

 

Fig.10. Optimal complex coefficient of complexity for efficiency hm  

 

Fig.11. Optimal complex coefficient of complexity for efficiency v  

For each performance v , hm , c , complex complexity of coefficients are as follows: 

For c : (p|Q n| M) 10
c

KL   , (p| M|Q n) 10.22
c

KL   , (Q n|p|M) 9.66
c

KL   , (M|p|Q n) 16,3
c

KL   ,
(Q n|M|p) 10,85

c

KL   , (M|Q n|p) 12,05
c

KL   .For hm : (p|Q n|M) 20.1
hm

KL   , (p|M|Q n) 19.9
hm

KL   ,
(M|p|Q n) 20.2

hm

KL   , (M|Q n|p) 18,28
hm

KL   , (Q n|p|M) 12.15
hm

KL   , (Q n|M|p) 10,85
hm

KL   . 

For v : (p|Q n|M) 48,5
v

KL   , (p|M|Q n) 36.3
v

KL   , (M|Q n|p) 37,41
v

KL   , (Q n|M|p) 35.11
v

KL   , 

(Q n|p|M) 24.31
v

KL   , (M|p|Q n) 40.76
v

KL   . 
Among the optimal multiple-valued logic trees (the smallest number of the real 

branches) the optimal tree is highlighted, ie the lowest value of complex coefficient of the 
complexity [3]. In particular, the complex coefficient of complexity for each performance 
of the Figures 9-11designate identical optimal complex multiple-valued logic trees 
(according to work [4]) for the joint and the distributed parameters M p  as shown in 
Figures 12-14. 



95 
 

 
 
 
 
 
 

Fig.12. Optimal multiple-valued complex logic tree for the c efficiency [4] 
 
 
 
 
 
 
 
 

Fig.13. Optimal multiple-valued complex logic tree for the hm efficiency [4] 
 
 
 
 
 
 
 
 

Fig.14. Optimal multiple-valued complex logic tree for the v efficiency [4] 
 For example, for the optimal multiple-valued complex logic tree in figure 12, the 
optimum  c efficiency ( 90,3%; 90,5%; 87,2%; 86,3%; 86,3%; 86,5%; 92,0%) are obtained 
for the code parameter changes Qn and Mp: 00 and 01 - 90%,3; 11 and 01 - 
90,5%; 11 and 21- 87,2%; 11 and 31-86,3%;11 and 63-86,3%;11 and 73-
86,5%;22 and 10- 92%. The numerical values given coded entries presented in Table 1. 
 
4. Conclusion  
 
 Game graphs make it possible to analyse the so-called “connected” decisions. Results 
obtained after the first decision have an influence on subsequent decisions. This is why they 
make it possible to make dynamic models. The graph distribution from any vertex  leads to 
a tree game structure. Therefore, for each structure is necessary to calculate the coefficient 
of complexity. Tree structure, with the lowest values of complexity level is the simplest 
structure. It's very important that the complex complexity of coefficients of the structure is 
used in the description of multi-valued logical decision trees. For discrete optimization of a 
gear pump after tooth undercutting the complex complexity of coefficient for each 
performance designate identical optimal complex multiple-valued logic trees.  
 This important property of a complex complexity of coefficients for optimal multi-
valued logic trees will allow for further research to develop a method for the direct 
determination of the optimal multi-valued logic trees of the dependency graph describing 
the system engineering. 
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