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Abstract: The increased popularity of Industry 4.0 has led many manufacturers to develop 
and implement solutions based on automation and data exchange in manufacturing 
techniques. The progress in automation of manufacturing processes along with new 
solutions for cyber-physical systems present both challenges and opportunities regarding 
predictive maintenance. The paper presents the assumptions of an intelligent system of 
prediction method selection for a zero-integration homoscedastic series, which is part of an 
original algorithm of multiple-model prediction method. The algorithm comprises an 
ARMA model, ADF test, AIC and BIC criteria, as well as MAE, MPE and MAPE 
prediction errors which are indispensable for establishing prediction error indexes. 
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1. Introduction 
 

Given high competition, companies are forced to introduce changes ensuring higher 
efficiency and enhanced product quality without additional manufacturing costs. For this 
reason, manufacturers take numerous actions to implement rationalizations and new 
technological solutions to eliminate defects which can have a negative impact on 
maintaining production continuity, machinery availability, reliability and safety, as well as 
product quality [2,16].  

Maintenance in this area must ensure the implementation of activities connected with a 
new industrial revolution concept, Industry 4.0. According to this concept, it is essential to 
create a smart factory through [36]:  

− implementation of advanced manufacturing systems (via visualization and 
monitoring of production processes), 

− the use of data clouds (via data storing and processing in the clouds, the use of 
analytical and  calculation systems in the cloud), 

− analysis of manufacturing process data (the use of advanced decision algorithms for 
real-time analysis), 

− the application of intelligent sensors (to ensure wireless data transmission), 
− the use of cyber-physical systems (ones that connect machines into a global unit as 

well as those which are autonomous decision systems), 
− the use of state-of-the-art maintenance (based on failure prediction algorithms, 

remote support systems and maintenance control systems). 
The objective of creating state-of-the-art maintenance can only be met via considerable 

involvement of maintenance service staff as well as implementation of  relevant procedures 
and advanced, prediction-based maintenance techniques [11]. Previous studies on the use of 
prediction models in predicting failure of a machine tool stock and other areas, were 
primarily based on the use of either some imposed model or prediction models defining the 



time interval when boundary values can be exceeded. None of the models employed in the 
listed studies was selected depending on varying characteristics of input data (residual 
processes). In addition to this, inferences were made only based on values obtained from 
the monitored residual processes, i.e., technological factors, excluding other factors which 
could lead to failure occurrence.  A state of the art survey has revealed that further studies 
should be conducted  to create prediction systems ensuring more accurate forecasts based 
on the use of new mathematical models (or their hybridisation), multiple-model prediction 
algorithms, and factors affecting boundary values which were not previously taken into 
consideration in the prediction process. 

Moreover, a prediction system is also expected to provide additional support for the 
decision area regarding the selection of an optimum moment for maintenance works  based 
on a work schedule of maintenance services. Therefore, steps must be taken to build a 
cyber-physical system which will, similarly to expert systems, signal scheduled repair or 
machine part/subassembly replacement based on implemented preventive actions, which 
could, in turn, prevent additional assembly line stoppages. 

This paper presents a general classification of prediction methods, their previous 
applications in selected engineering problems, primarily those connected with the operation 
of  a stock of machine tools. The paper also describes an original algorithm of multiple-
model prediction method developed in response to the demand for further development of 
systems for predicting failure of technological infrastructure.  To illustrate the dynamic 
selection of a mathematical model depending on variations in the nature of residual 
processes,  the paper presents a piece of algorithm taken from an intelligent system of 
prediction method selection (part of the algorithm of multiple-model prediction method) for 
a homoscedastic series with zero-integration. 
 
2. Prediction models in engineering problem  
 

The main objective of prediction methods is to design a model which will enable 
prediction of further values of the input flux using previous information about the character 
of a set being observed. There are many methods for predicting the behaviour of physical, 
technical and economic systems. Such methods are employed to model behaviours or 
events. A general classification of prediction methods is shown in Fig.1. 

To gain more insight about the progression of phenomena and behaviour of objects, the 
developed prediction methods were used for solving engineering problems.  For this reason, 
the literature on the subject reports only few examples of forecasting applications.  

In their work Jui-Sheng Choua, Ngoc-Tri Ngoa and Wai K. Chong [3] report the results 
of research on predicting the corrosion rate of carbon steel used in the production of 
reinforcement bars. To this end, a hybrid model was developed based, among others, on  an 
artificial neural network, classification and regression trees and linear regression. 
According to these authors, the prediction obtained by the combined methods was more 
accurate than that obtained by a single model  (mean absolute percentage error (MAPE) of 
pitting corrosion was 5.6% while that of sea-water corrosion was 1.26%) [3]. 

Artificial neural networks have also been investigated by Hashemi and Clarc [9] with 
respect to their application for predicting Diesel engine exhaust gas emissions. The 
predictions were made with respect to factors such as the content of nitric oxides (NOx), 
carbon dioxide (CO2), hydrocarbons (HC) and carbon monoxide (CO), while the input data 
included: axis speed, torque and their derivatives in different time intervals, as well as two 
new variables defining variations in speed (for over 150 s). The studies helped determine 



acceptable ANN-based (Artificial Neural Network) predictions; however, it was 
problematic to model exhaust fume emission beyond the work cycle.  
 

 
Fig. 1 Classification of prediction methods 

Source: Created by the authors based on [34] 
 
Prediction methods can also be used for determining optimum moment of maintenance  

of bridges [15].  Studies were conducted on the application of a genetic algorithm based on 
three objective functions: condition and safety indicators as well as accumulated cost of life 
cycle maintenance.  

Negnevitsky and Johnson [21] offer a survey of available techniques for predicting 
wind energy within a time frame of 30 minutes. Based on a literature survey, these authors 
indicate that wind energy prediction is done using econometric models such as moving 
average (MA), autoregressive moving average (ARMA), autoregressive integrated moving 
average (ARIMA), as well as their modifications enabling the modelling of seasonal effect 
(SARIMA). Moreover, the authors point to the use of hybrid models created based on fuzzy 
logic and artificial neural networks. 

Rogalska [24] presents a method for predicting duration of building processes based on 
factors which may affect them. She designed a method combining several prediction 
methods: multiple regression, multivariate adaptive regression by spline functions, 
generalized additive models, artificial neural networks, support vectors and integrated 



autoregression. The final decision concerning the selection of a prediction model is made 
based on the calculated prediction error (a model with the smallest prediction error is 
selected). The author claims that prediction can be made based on many factors affecting 
duration of the process. She also stresses the method's universality, as it can be applied to 
all building processes.   

The above examples illustrate merely some of the studies conducted on the use of 
prediction methods, demonstrating a wide range of applications for different prediction 
models in solving engineering problems. The results confirm the benefits of using 
forecasting to make inferences about further developments of phenomena or object 
behaviour. Moreover, they prove the need for conducting research on the use of prediction 
in other areas (including machinery operation). 
 
3. Econometric models in an adaptive decision and prediction algorithm  

 
The furnishing of machine tool stocks with state-of-the-art monitoring systems which 

keep track of residual processes (along with the current trend for equipping machines with 
such systems already at the stage of their design and production) led to acquisition of huge 
databases about the condition of machine tool stock. The introduction of automation at the 
stage of data acquisition is a significant source of information about reliability, serving as a 
basis for making inferences about condition of machinery and devices. This can, however, 
be done only after an analysis of the acquired entries. These entries are only a set of  big 
data [10,18,33]; without the use of relevant inference rules, they do not provide information 
enabling taking actions with respect to maintenance  [27].  

Previous research on forecasting in technical infrastructure operation involved attempts 
to apply the existing prediction methods or their modifications in order to generate 
predictions about the technical condition of a stock of machine tools.  Studies were 
conducted on the use of multiple regression for predicting failure duration in wheel 
excavators [25], as well as failure frequency of a water power plant [17]. In addition, 
Lucifredi, Mazzieri and Rossi [17] verified failure frequency predictions by a modified 
kriging method as well as its combination with neural networks. Artificial intelligence has 
also been used for designing a system for monitoring the condition of a wind turbine 
gearbox [8] or mine belt joints [19]. In the work [4] Chuang, Luqing, Liu, Ren, Benoît and 
Yuanchu propose the use of a genetic algorithm for predicting failure of 
telecommunications devices.  It has also been proposed to use  trees and random forests 
[31]. The application of residual process values to predict failure frequency of a stock of 
machine tools using ARMA/ARIMA  models was investigated by Kaźmierczak [12]. 
Sobaszek  [28] proposed using survival analysis for predicting machine failure frequency. 

The implementation of predictive maintenance actions in the above examples enabled 
prolonging operation time of the monitored  machine parts / subassemblies and taking 
maintenance and repair actions based on their real condition. Another  step in the 
development of prediction systems should be to enhance the existing prediction methods by 
tailoring prediction models to the nature of monitored values of residual processes and by 
taking account of factors previously omitted in failure frequency predictions  yet which 
have a real impact on failure occurrence. It would also be significant to combine predicting 
with an expert system which could support maintenance services with respect to decision 
about optimal date of maintenance works, and would also comply with the assumptions of 
Industry 4.0 with respect to maintenance. 



Given the lack of a prediction and decision system which could ensure both dynamic 
prediction model selection and maintenance services support in determining optimal date of 
maintenance works, the authors propose an adaptive algorithm which is shown 
schematically in Fig. 2.  

 

 

 
 

Fig. 2 Algorithm of multiple-model prediction method 
Source: created by the authors [13] 

 
Comprised in the PREDICTION PART of the multiple-model prediction method 

algorithm, the intelligent system for prediction model selection receives input information 
about the monitored parameters of machine condition (e.g. temperature or vibration). Based 
on the set of values relating to the studied phenomenon (factor), using proper informational 
criteria, the intelligent system would select the appropriate mathematical model. The 
prediction is done by econometric models used for time series analysis due to time-varying 
characteristics of residual processes. Stationary process phenomena are identified using the 
following mathematical models: 

− for stationary series [12, 5, 29, 35]: 
− AR- autoregressive models,  
− MA- moving average models,  
− ARMA- autoregressive moving average models,  

− for non-stationary series [12, 23, 26, 7, 1, 32, 22, 30, 20]: 
− ARIMA- autoregressive integrated moving average models, 
− SARIMA- seasonal ARIMA, 
− ARCH- Autoregressive Conditional Heteroscedasticity, 
− GARCH- Generalized ARCH, 
− RGARCH- Randomized GARCH, 
− EGARCH- Exponential GARCH, 



− TARCH- Threshold ARCH, 
− HARCH- Heterogeneous interval ARCH. 

After selection of a suitable model, the system sends an inquiry to the database with 
boundary values of specified monitored observation vectors of machine 
parts/subassemblies. The reply as well as a piece of information from the production 
process database concerning production schedule and production line efficiency is used to 
predict the time after which a given machine part/subassembly will fail. The generated 
prediction should be then send to the decision algorithm which, based on an inquiry sent to 
the production process database with a schedule of maintenance and repair works, stock of 
spare parts and delivery delay penalties, indicates an optimal date of repair works.  A 
significant feature of such a model is the use of iterative techniques which enable prediction 
update and generate messages of various rank depending on the time left before the 
undesired event occurs.  

It should be mentioned that such a model for generating predictions and 
recommendations concerning the method and time of taking preventive actions should also 
take into consideration qualitative features and non-technical aspects. Consequently, it is 
necessary to determine criteria for expressing these factors and to determine their effect on 
failure frequency of a machine tools stock.  

Given the extensive structure of the algorithm in the intelligent system for prediction 
method selection, the subsequent part of the paper will describe only a fragment of this 
algorithm. By means of ADF test (augumented Dickey–Fuller test [5]), we can determine 
the degree of integration of a time series { } Nttx ≤≤1   or order of polynomial approximating 

the deterministic part of this series. Let  ∆  be an differential operator of form 
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k xxx  . In case of elements of the time series being integrated in  

0≥r  degree, the time series  { } Ntrt
r x ≤≤+∆ 1   is identified using by means of ARMA 

models. If the elements of the series { } Nttx ≤≤1   are presented by an equation 
 

( ) tt tfx ε+=  for Nt ≤≤1 ,     (1) 
 

where  ( )tf  is a polynomial of 0≥r  degree, then the residual series{ } Ntt ≤≤1ε   is also 
identified by means of ARMA models.  

( )qpARMA , , Ν∈qp,  models are linear models, in which the time-delayed 
elements  of time series Ntt ∈}{ε  are used as explanatory variables [13]. It is assumed that 
value of variable which is predicted in period t is dependent upon past values ptt −− εε ,...1  

and upon mistakes of past realizations 1,..., −− tqt ωω  Elements of ( )qpARMA , , 

Ν∈qp,  model are presented by a formula: 

qtqtttptpttt −−−−−− −−−++++= ωθωθωθωεαεαεαε ...... 22112211 , t>max(p,q)           (2)   

where Ν∈tt }{ω  is a sequence of identically independent random variables  from normal 
distribution N(0,1), while qp θθαα ,...,,,..., 11 - are parameters of the model. Utilising above 



model enables the inclusion of simultaneously autoregressive properties Ntt ∈}{ε  and 

moving average properties [13] in the series of residuals or of { } Ntrt
r x ≤≤+∆ 1 . The paper 

presents way of determining autoregressive model AR and moving average MA, enabling 
dynamic adjustment of model ARMA to the changing values of residual processes. 

4. Proposed algorithm of multiple prediction method for a zero integration  
homoscedastic series  

 
In inferencing based on values of residual process it is vital to determine sampling 

frequency and the number of entries which are required to restart the algorithm in order to 
select a suitable prediction model. It is also essential to perform analysis of the 
deterministic part, which has been deliberately omitted in Fig. 3. 

First, the degree of integration of a time series is determined using the ADF test  
 

 { } ( ){ }0I   :min ∈∆Ν∈= ≤≤ Ntkt
k xkr , 

i.e., it is the smallest natural number Ν∈r  for which the series  { } Ntrt
r x ≤≤+∆ 1 has zero 

integration, while ( )0I  is a set of stationary series. At the significance level of 0>α  for 

the series { } Nttx ≤≤1 ,{ } Nttx ≤≤∆ 2 ,…,{ } Ntrt
r x ≤≤+
−∆ 1
1  there is no ground for rejecting the 

working hypothesis 0H (the series is non-stationary), while in the case of the series 

{ } Ntrt
r x ≤≤+∆ 1  the working hypothesis is rejected in favour of the alternative hypothesis 

1H (the series is stationary). 

The next step is to identify the series { } Ntrt
r x ≤≤+∆ 1  or the series { } Ntt ≤≤1ε  (see (1)) using 

the ( )qpARMA ,  models, where Ν∈qp, . This is done only in the class of stationary 

models ( )qpARMA ,  for max0 pp ≤≤  and max0 qq ≤≤ . The highest values of the 

autoregressive orders maxp  and moving average maxq  are determined by Partial Auto 
Correlation Function (PACF) and Auto Correlation Function (ACF). The PACF indicates 
the highest maxp  of autoregression (AR), while the ACF points to the highest order maxq  

of moving average (MA). The ultimate selection of a suitable ( )qpARMA ,  model for 

max0 pp ≤≤ , max0 qq ≤≤  is made using the Akaike information criterion (AIC) and 
Schawartz’s  Bayesian information criterion (BIC). 

Out of the ( )qpARMA ,  models for max0 pp ≤≤ and max0 qq ≤≤ , a model with 
the smallest Akaike information criterion (AIC value) is selected and is denoted as 

( )AICAIC qpARMA , . Out of the ( )qpARMA ,  models for max0 pp ≤≤ and 

max0 qq ≤≤  a model with the smallest Schwarz’s Bayesian information criterion (BIC 

value) is selected and is denoted as ( )BICBIC qpARMA , .  When BICAIC pp =  and

BICAIC qq = ,   the   series  { } Ntrt
r x ≤≤+∆ 1    or   the   series   { } Ntt ≤≤1ε    is   modelled   by 



 
Fig. 3 Fragment of an algorithm of intelligent system for prediction 

method selection for a zero integration homoscedastic series 
Source: created by the authors 



( )AICAIC qpARMA , . A problem arises when  BICAIC pp ≠  or BICAIC qq ≠ , because it 

is not clear in which model:  ( )AICAIC qpARMA ,  or ( )BICBIC qpARMA , , the series 
being analysed should be identified. To solve the above problem, a ranking of these models 
is established based on the calculated values of MAE (Mean Absolute Error),  MPE (Mean 
Percentage Error) and MAPE (Mean Absolute Percentage Error). 
Next, for each ( )AICAIC qpARMA ,  and ( )BICBIC qpARMA ,  models, the values of 

AICMAE , AICMPE , AICMAPE ,  BICMAE , BICMPE  and BICMAPE  are calculated, 

and  error indexes,  AICI  and BICI , are created in the following way:  

    (3) 

    (4) 

    (5) 
 and  

MAPE
AIC

MPE
AIC

MAE
AICAIC IIII ++= .      (6) 

 
Obviously   
 

MAE
AIC

MAE
BIC II −=1 , MPE

AIC
MPE
BIC II −=1 , MAPE

AIC
MAPE
BIC II −=1     (7) 

 
and  
 

AICBIC II −= 3 .       (8) 
 

 
If BICAIC II > , then the behaviour of the series { } Ntrt

r x ≤≤+∆ 1  or the series 

{ } Ntt ≤≤1ε  is predicted by ( )AICAIC qpARMA , , otherwise the prediction is made using 

( )BICBIC qpARMA , . 
Such an approach enables dynamic tailoring of a prediction model to the nature of real-

time determined values of residual processes. The multiple prediction algorithm makes the 
prediction system resistant to variations in time series, something which cannot be ensured 
by the use of an imposed mathematical model. 
 
 



5. Conclusions 
 

Nowadays manufacturing companies have access to vast databases with recorded 
machinery operational parameters and residual processes due to the availability of systems 
for the real-time recording of various parameters, conditions or statuses connected with 
machinery operation. The main challenge these days is to use these databases to obtain 
information which could help eliminate undesired phenomena or behaviour occurring at 
different stages of production, which – in turn – would lead to financial benefits. The 
expectations of production companies with respect to ways of increasing reliability indexes 
spurred the development of maintenance.  

The current developments of Industry 4.0 aimed at the creation of a smart factory 
comply with the predictive maintenance strategy.  

Previous predictive systems did not enable dynamic selection of a mathematical model 
depending on variations in stored and processed data. The solution proposing the use of 
econometric models based on the use of previous deterministic part analysis, ADF test, 
information criteria as well as prediction error and error indexes is an innovative approach 
to selecting failure frequency prediction models. A predictive system based on such a 
solution will be characterized by both transferability (it can be employed on different 
production lines) and resistance to variations in data characteristics.  
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